Вы здесь

Культуры клеток и тканей растений как продуценты биологически активных соединений

Средняя: 5 (2 оценок)
Источники БАВ

Благодаря способности изолированных из растения тканей и клеток к видоспецифичному синтезу вторичных метаболитов, исследования в этой области приобретают все большую актуальность. Таким образом, с каждым годом увеличивается количество культур, для которых подтверждены и оправданы разработки методов культивирования с целью внедрения их в промышленное производство. К таким культурам относятся, прежде всего, культуры-продуценты веществ с высокой биологической активностью. По данным китайского исследователя M. Kawamura, многие полученные в лабораториях культуры вполне успешно могут использоваться для внедрения в производство, так как их выращивание in vitro экономически эффективно по сравнению с промышленным способом получения биомассы растений, содержащих биологически активные вещества [211]. В этой же работе приводится пример применения суспензионной культуры Phryma leptostachya L., для производства лигнана А, обладающего инсектицидным действием на широкий спектр сельскохозяйственных вредителей и не вызывающего привыкания.

Одной из первых культур-продуцентов БАВ можно по праву считать полученную M. N. Zenk с сотрудниками культуру барвинка розового (Catharanthus roseus) – продуцента двух алкалоидов: серпентина и аймалицина [200, 242, 245]. На этом объекте были установлены основные условия получения культур-продуцентов веществ вторичного обмена. Данные, полученные в лаборатории M. N. Zenk'а, позволили выдвинуть гипотезу, которая была развита и дополнена авторами, работающими с другими видами растений. Были наработаны экспериментальные данные, свидетельствующие о том, что для получения культур-продуцентов с высоким синтетическим потенциалом важно учитывать следующие особенности:

  1. отбирать растение, в котором содержание биологически активных веществ максимально по сравнению с другими особями этого вида;
  2. для инициации культуры тканей использовать органы растений, в которых происходит синтез и накопление данных веществ, что позволит разнообразить и обогатить состав конечных продуктов;
  3. при культивировании тканей в условиях in vitro необходимо учитывать такие условия как:
  • наличие и состав источников углеродного питания;
  • наличие в культуральной среде минеральных веществ: источников азота, фосфора, калия, серы, кальция и других макро- и микроэлементов;
  • наличие витаминов и аминокислот, способствующих видоспецифичным синтезам БАВ;
  • наличие и типы гормональных индукторов, поддерживающих способность клеток к делению и стимулирующих синтез вторичных метаболитов;
  •  наличие или отсутствие в среде кислорода или избытка углекислого газа;
  • наличие освещения и предшественников конечных продуктов;
  • рН среды и температуру в культуральных помещениях [4, 8, 9, 20, 21, 23, 27, 37, 49, 59, 66, 83, 85-90, 94, 107, 108, 113, 115, 121, 132, 140, 150, 167, 211, 233-235].

Благодаря сделанным открытиям в настоящее время во многих лабораториях мира ведутся исследования по культивированию соматических тканей в условиях in vitro для получения культур-продуцентов. Это обусловлено перспективой промышленного использования культивируемых клеток растений для получения соединений их специализированного обмена и одновременного уменьшения антропогенного влияния на дикую природу, возможность получения фитомассы, не содержащей полютантов (гербицидов, пестицидов, тяжелых металлов и др.), управления процессом биосинтеза целевых продуктов и т.д.

В настоящее время на стадии изучения способности к накоплению биологически активных веществ in vitro находится большое количество культур, полученных из растений с высокой биологической активностью. В доступной нам литературе было обнаружено несколько примеров культур-продуцентов, которые накапливают различные ценные метаболиты:

  • алкалоиды барвинка розового (Vinca rosea L. синоним Catharanthus roseus) которые активно применяются в качестве противоопухолевых антибиотиков, оказывающих цитостатическое действие на опухолевые клетки благодаря способности блокировать митоз на стадии метафазы. Эти алкалоиды входят в состав антибиотика «Розевин» [104, 105]. В данный момент в нескольких лабораториях мира имеются культуры-продуценты этого алкалоида, превосходящие по синтетической активности исходные растения, среди них – штаммы, в которых произошло смещение синтеза в сторону одного из конечных метаболитов – серпентина или аймалицина [107, 115, 200, 242, 245, 246];
  • таксол и другие таксаны (противораковые антибиотики, использующиеся при лечении онкологических заболеваний), получают в суспензионной культуре Taxus canadensis и других сходных видов [57, 189, 203, 212, 232];
  • индольные алкалоиды (резерпин, ресцинамин, аймалин, аймалицин, аймалинин, раувольфин, серпагин, йохимбин, серпентин и др.), применяющиеся в медицине в качестве гипотензивных, антиаритмических, успокаивающих центральную нервную систему веществ. Данные вещества в комплексе или по отдельности входят в состав таких препаратов, как «Резерпин», «Раунатин», «Аймалин», «Пульсонорма», «Раувазан» [104, 105]. Все перечисленные метаболиты успешно получают из культуры тканей раувольфии [21, 30, 91, 94, 157, 174];
  • алкалоиды барбариса (в частности берберин), способные понижать артериальное давление, повышать тонус мускулатуры матки. Кроме того, сумма алкалоидов барбариса проявляет желчегонное действие на организм [104, 105]. Эти и другие алкалоиды, содержащиеся в интактном растении, получают в культуре клеток Berberis parvifolia и других видов [196, 238];
  • алкалоиды мака прицветникового (Papaver bracteatum) – сангвинарин, использующийся в медицине в качестве антимикробного и антихолинэстеразного средства. В культуре тканей этот алкалоид синтезируется в количествах, превосходящих содержание в интактных растениях [87, 140];
  • алкалоиды мака снотворного (Papaver somniferum) так называемые опиатовые алкалоиды: морфин, наркотин, папаверин, кодеин, тебаин и их производные, относящиеся к группе наркотических веществ, вызывающих привыкание и зависимость, в связи с чем их производство промышленным способом практически невозможно и запрещено во многих странах, в том числе и в Украине. Из данной группы соединений морфин в медицине является наиболее широко применяемым алкалоидом. Хотя химический синтез морфина был осуществлен еще в 1952 году, сегодня основным его источником по-прежнему является природное сырье, что связано со сложностью получения химических аналогов [104-105]. Широкое использование в медицине способствовало получению данных веществ на основе биотехнологических разработок, в частности, биосинтеза в культуре ткани [88, 89];
  • кардиотропные гликозиды Digitalis lanata Ehrh. и Digitalis purpurea L., в медицинской практике применяющиеся для комплексной терапии при нарушениях моторики сердца. Известна эффективность данных гликозидов при лечении различных типов сердечной недостаточности: при перегрузках миокарда, гипертонии, поражениях клапанов сердца, атеросклеротическом кардиосклерозе [104, 105]. В связи с широким спектром биологического действия гликозидов М. Кулабаковой и М. Стрнадом в 1991 году были получены штаммы каллусных тканей из различных эксплантов (листья, цветки, тычинки и другие) этих видов растений [84]. Проведенные исследования позволили получить суспензионные культуры клеток обоих видов, способных к продуцированию гликозидов в количествах, превышающих содержание в интактных растениях как по концентрации, так и по разнообразию синтезируемых в культуре гликозидов;
  • тритерпеновые сапонины (гликозиды) женьшеня: панаксозиды А и Б, панаквилон, панаксин, которые используются в качестве тонизирующего средства при гипотонии, усталости, неврастении и переутомлении [104, 105]. Данные вещества получают из суспензионных и каллусных культур Panaxginseng, Р. japoninicusvar. repens, P. notoginseng, P. quinquefolius [21, 46, 144, 158, 160, 164, 169, 171, 249].

Кроме того, в культуре тканей и клеток растений считается возможным получение следующих вторичных метаболитов: стероидных алкалоидов Hollarhena antidysenterica (Poxb) Wall., проявляющих антибактериальную активность [53]; β-карболиновых алкалоидов гармалы обыкновенной (Peganum garmala L.), имеющих антибактериальную активность и влияющих на обменные процессы нервной и сердечно-сосудистой систем, а также на активность некоторых ферментов; стероидов в культуре тканей Dioscorea cauccasica [195]. Имеется опыт получения кофеина в клетках Coffea arabica, различных фенолов и их полимеров в культурах чайного растения (Camellia sinensisL.) и культуре петрушки (PetroseleniumhortenseAuct.) [54, 56, 58 213]. Существуют сообщения о синтезе капсицина в культуре клеток Capsicum annuum L., шиконина – в культуре клеток Onosma paniculatum и Lithospermum erithororhizon [115, 226, 241, 247]. В суспензионной и каллусных культурах Chrysanthemum cinerariifolium при промышленном культивировании получают пиретроиды – вещества с сильным инсектецидным действием, не являющиеся токсическими для человека, при этом клетки in vitro накапливают метаболиты в количествах, превосходящих содержание таковых в интактных растениях [209, 211]. В промышленных масштабах из суспензии клеток N. tabacum получают убихиноны [226]. Кроме того, культура клеток и тканей используется для получения следующих веществ вторичного обмена: алкалоидов в культуре тканей Atropa belladonna, фенольных соединений в культуре чайного растения, индольных метаболитов и лигнанов из каллусных культур ипомеи, гиосциамина и скополамина и тропановых алкалоидов в культуре клеток дурмана [59, 107, 115, 167]. Получены алкалоиды в культуре хинного дерева, антрахиноны у Morinda citrifolia, иридоидные гликозиды Galium mollugo, антоцианы в культивируемых клетках Haplopappus gracilis, катехины и проантоцианидины в каллусе и суспензии Crataegus sp., Ginkgo biloba и винограда. Сапогенины, представленные стероидными гликозидами, в культуре Dioscorea deltoidea и Agave wightii, фенольные соединения в культивируемых клетках Acer pseudoplatanus, никотин и алкалоиды в каллусных культурах Nicotiana tabacum [26, 32, 40, 59, 65,107, 188, 248].

Выделены противораковый алкалоид подофиллотоксин в культуре тканей подофила, розмариновая кислота в культуре Coleus blumei, сапонины и их гликозиды в культуре Glycyrrhiza uralensis, антоцианы в культивируемых клетках моркови, фенолы в клетках чая [54, 123, 204, 235]. Наряду с этим получены природный краситель бетацианин в суспензионной культуре Beta vulgaris, антрахиноны в Cassia fistula, Cassia tora, сапогенины в тригонелле, хлорогеновая кислота в табаке [27, 185, 190, 236]. Имеются сообщения о выделении нафтохинонов и антоцианов в культуре Plumbago zeylanica, скополетина, скополина и хлорогеновой кислоты, а также суммы фенолкарбоновых кислот в культуре скополии [107, 190, 251]. В каллусах льна подтверждено образование п-кумаровой и феруловой кислот, а в каллусах сои – суммы фенольных соединений. Кроме того, получены сапогенины в культуре Solanum aviculare, витамин В6 и сумма алкалоидов в дурмане и руте, алкалоид лапаконитин в каллусной ткани борца высокого, сапонины в культуре ткани Atrаgene sibirica L., гиперицин и псевдогипреицин в суспензиях Hipericum perforatum, антрахиноны, используемые для лечения почечнокаменной болезни и заболеваний печени в культуре тканей Rubia cordifolia L. [25, 44, 67, 68, 107, 124 ]. Таким образом, исходя из литературных данных отечественных и зарубежных авторов, можно констатировать тот факт, что культура тканей лекарственных растений в настоящее время является не только подходящей моделью для изучения процессов вторичного метаболизма высших растений, но и перспективным источником веществ с высокой биологической активностью. Однако результаты, представленные нами в обзоре, не позволяют однозначно ответить на вопрос о взаимоотношении накопления вторичных метаболитов и уровня проявления морфогентической реакции дедифференцированными клеточными культурами. При проведении исследований с конкретной культурой нужны новые экспериментальные данные по получению каллусных культур – продуцентов вторичных метаболитов. Необходимо исследовать их морфогентический потенциал, условия культивирования, установить зависимость между процессами накопления вторичных метаболитов и морфогенезом в каллусных культурах.

Автор фото в статье: Ляпустина Е.В.

Ссылки на литературу в тексте соответствуют источнику.

Источник: Сидякин А.И., Индуцированный морфогенез in vitro и накопление тритерпеновых гликозидов в каллусных культурах ломоноса виноградолистного (Clematis vitalba L.): Дис. … канд. биол. наук. Симферополь. 2011. – 217 с.

Материал любезно предоставил Сидякин Андрей Иванович – к.б.н., ас. каф. ботаники и физиологии растений и биотехнологий и м.н.с. Биотехнологического центра НИЧ Таврического национального университета им. В.И. Вернадского, научный консультант ООО КрымБио

Добавить комментарий

CAPTCHA
Этот вопрос задается для того, чтобы выяснить, являетесь ли Вы человеком или представляете из себя автоматическую спам-рассылку.